watanabetakanobu のすべての投稿

拡散係数もいろいろ(2)

渡邉孝信(早稲田大学・電子物理システム学科)

ドリフト移動度から拡散係数を決めてみる

ドリフト移動度\(\mu\)は、 \(q\)を素電荷、\(m\)を電子の質量(正確に言うと有効質量)、\(\overline{t}\)を平均自由時間として

$$\mu=\frac{q\overline{t}}{m} \tag{2.1}$$

と表されます。\(\mu=q\overline{t}/(2m)\)としていた本も以前にあったようですが、それは誤りだというのが現在の統一見解です。

これはアシュクロフト-マーミン著「固体物理学の基礎」にも書かれている有名な話ですが、1900年に最初に電気伝導の古典的理論を発表したドルーデ自身、論文で\(\mu=q\overline{t}/(2m)\)と書いていました。その後、1905年に発表されたローレンツの論文で\(\mu=q\overline{t}/m\)に修正されたのです。

ドリフト移動度\(\mu\)に1/2をつけるか否かという問題はたいへん微妙で、アシュクロフト-マーミンの本でも第1章の最初の演習問題として取り上げて読者に熟考を促しています。実はこの問題が、ドリフト移動度だけでなく、拡散係数の式の違いにも関係してくる、というのがこのシリーズ記事を通して伝えたいことなのですが、この件については追々詳しく説明していきます。

 さて、ドリフト移動度\(\mu\)が決まっているなら、アインシュタインの関係式から

$$D=\frac{\mu}{q}k_BT=\frac{\overline{t}}{m}k_BT \tag{2.2}$$

と拡散係数\(D\)が一意に決まります。系が熱平衡状態に近く、エネルギーの等分配則

$$\frac{1}{2}m\overline{v^2}=\frac{3}{2}k_BT \label{equipartition}\tag{2.3}$$

が成り立つと考えてよければ、平均熱速度を根二乗平均速度として(\(\overline{v}=\sqrt{\overline{v^2}}\))

$$D=\frac{1}{3}\overline{v^2}\overline{t}=\frac{1}{3}\overline{v}\overline{l}=\frac{\overline{l}^2}{3\overline{t}} \label{diffusivity}\tag{2.4}$$

となります。ここで\(\overline{l}=\overline{v}\overline{t}\)としました。

 ここで注意すべきことは、熱平衡状態で成り立つエネルギーの等分配則の式\(\eqref{equipartition}\)を仮定している点です。拡散電流が流れている場合には熱平衡状態ではありませんから、マクスウェル・ボルツマン分布は歪んでいるはずで、等分配則も厳密には成り立ちません。式\(\eqref{diffusivity}\)はあくまで近似式に過ぎないことを忘れないようにしましょう。

拡散係数もいろいろ(1)

渡邉孝信(早稲田大学・電子物理システム学科)

ねぇおかしいでしょ1/2

半導体デバイスの授業では、キャリアの基本的な輸送機構として、

ドリフト電流 と 拡散電流

の概念をまず学びます。まだ非平衡統計力学を学んでいない場合がほとんどでしょうから、ドリフトや拡散の概念を説明する際は、高校物理で登場する気体分子運動論が用いられます。熱運動する気体分子に電子をなぞらえ、平均速度 \(\overline{v}\) 、平均自由行程 \(\overline{l}\) 、平均自由時間\(\overline{t}\) を使って、ドリフト移動度 \(\mu\) と拡散係数 \(D\) を表してみせるのです。

 その際に困るのは、この初歩的に導出される拡散係数 \(D\) の式が本によってまちまちで、しかもイマイチ釈然としない説明が多いことです。一方、ドリフト移動度 \(\mu\) の式はほぼ1通りに落ち着いています。そこで、金科玉条のアインシュタインの関係式

$$ D=\frac{\mu}{q}k_BT \label{einstein}\tag{1.1}$$

を使って( \(q\)は素電荷、 \(k_B\)はボルツマン定数、 \(T\)は絶対温度)、ドリフト移動度 \(\mu\) から拡散係数\(D\) を決定することで、そうした混乱を回避している教科書も多数あります。というよりむしろ、拡散係数\(D\) は式\(\eqref{einstein}\)で定めるべきでしょう。

そうは言っても、拡散というキャリア輸送の微視的描像をつかむには、気体分子運動論に基づく説明に触れておくことはたいへん有意義です。

 表1に、筆者が知っている範囲ですが、代表的な教科書や専門書に書かれている拡散係数の式をまとめておきました。どうしてこうもいろいろあるのでしょうか?

それは、平均速度 \(\overline{v}\) 、平均自由行程 \(\overline{l}\)、平均自由時間 \(\overline{t}\)といった量の「平均」の取り方に、いろいろな方法や考え方があるからです。

表1 様々な拡散係数の式。 \(\overline{v}\) :平均速度(熱運動速度)、 \(\overline{l}\):平均自由行程、\(\overline{t}\):平均自由時間 
  文献 拡散係数の式 備考
[1] S. M. Sze, M. K. Lee, Semiconductor Devices, Physics and Technology 3rd ed., Wiley (2013). \(D=\overline{v}\overline{l} \) 1次元モデル
[2]

B. L. Anderson, R. L. Anderson, Fundamentals of Semiconductor Devices 2nd. ed., McGraw-Hill, (2017).

\(D=\frac{1}{2}\frac{\overline{l}^2}{\overline{t}}\) 1次元モデル
[3] W. パウリ, C. P. エンツ, 熱力学と気体分子運動論(パウリ物理学講座3), 講談社, (1976) \(D=\frac{a}{2}\overline{v}\overline{l}\) 3次元モデル。\(a\)は平均自由行程にかかる無次元の係数。\(\overline{v}\)は平均速さ。文献[11]のChapmanの本に準拠。
[4]

F. Reif著, 久保 亮五監訳, バークレー物理コース「統計力学」, 丸善(1970)

\(D=\frac{1}{3}\overline{v}\overline{l}\) 3次元モデル。
[5] ファインマン物理学II 光・熱・波動, 岩波書店 (1986) \(D=\frac{1}{3}\overline{v}\overline{l}\) 3次元モデル。係数の決定が難しいことを丁寧に解説しつつ、最後に1/3を天下り的に導入。
[6] ランダウ=リフシッツ理論物理学教程「物理学的運動学I」, 東京図書(1982) \(D\sim\overline{v}\overline{l}\)  
[7] Atkins’ Physical Chemistry \(D=\frac{1}{3}\overline{v}\overline{l}\) 3次元モデル。導出はパウリ[3]とほぼ同じだが。最後に2/3を掛けている。\(\overline{v}\)は平均速さ。
[8]

戸田 盛和, 斎藤 信彦, 久保 亮五, 橋爪 夏樹, 統計物理学(岩波講座「現代物理学の基礎」), 岩波書店 (1978)

\(D=\frac{1}{6}\frac{\overline{l}^2}{\overline{t}}\) 3次元のブラウン運動モデル。「\(\overline{l}\)、\(\overline{t}\)の定義のしかたによって何らかの係数がかかることもあるが」との断り書きあり。
[9] O. E. Meyer, Kinetic Theory of Gases, (1899). \(D=\frac{\pi}{8}\overline{v}\overline{l}\) 3次元モデル。気体分子運動論による拡散係数の定式化の元祖。\(\overline{v}\)は平均速さ。根二乗平均速度を用いると\(D=\frac{1}{3}\overline{v}\overline{l}\)となる。
[10] J. H. Jeans, The Dynamical Theory of Gases, Cambridge University Press (1916) \(D=\frac{1}{3}\overline{v}\overline{l}\) 3次元モデル。Meyer[9]の式を簡略化した議論で導いている。
[11] S. Chapman, T.G. Cowling, The Mathematical Theory of Non-uniform Gases, Cambridge University Press (1939) \(D=\frac{a}{2}\overline{v}\overline{l}\) \(a\)は1に近い係数。\(\overline{v}\)は平均速さ。

まず注意すべきは、考えている系の次元が必ずしも同じではないということです。3次元空間における拡散流を考える際、その流れの方向に対して斜影をとるため、\(\overline{v}\)と\(\overline{l}\)はそれぞれ\(1/\sqrt{3}\)倍されます。3次元モデルの多くに1/3や1/6という係数がついているのはそのためです。終始1次元で議論している本では、1/3倍しないままにしています。

また、平均熱速度 には「速さの平均」や「根二乗平均速度」など、複数の定義があることも念頭に置いておく必要があります。ただしこの差はそれほど大きくありません。マクスウェル-ボルツマン分布を仮定した場合

$$平均速さ: \overline{|\boldsymbol{v}|}=\sqrt{\frac{8k_BT}{\pi m}} \label{meanvelocity}\tag{1.2}$$

$$根二乗平均速度: \sqrt{\overline{\boldsymbol{v}^2}}=\sqrt{\frac{3k_BT}{m}} \label{rmsvelocity}\tag{1.3}$$

となり、根二乗平均速度は速さの平均の0.92倍と、若干ですが小さめになります。

表1の文献[9]のMeyerの本は、気体分子運動論に基づいて拡散係数を定式化した最初期の仕事です。Meyerの式では、式\(\eqref{meanvelocity}\)の速さの平均\(\overline{|\boldsymbol{v}|}\)が\(\overline{v}\)として採用されていて、平均自由行程も\(\overline{l}=\overline{|\boldsymbol{v}|}\overline{t}\)とおいています。これらを根二乗平均速度\(\sqrt{\overline{\boldsymbol{v}^2}}\)に置き換えると、\(\overline{|\boldsymbol{v}|}=\sqrt{8/(3\pi)}\sqrt{\overline{\boldsymbol{v}^2}}\)、\(\overline{l}=\sqrt{8/(3\pi)}\sqrt{\overline{\boldsymbol{v}^2}}\overline{t}\)となるので、

$$D=\frac{\pi}{8}\overline{v}\overline{l}=\frac{\pi}{8}\overline{|\boldsymbol{v}|}^2\overline{t}=\frac{\pi}{8}\frac{8}{3\pi}\overline{\boldsymbol{v}^2}\overline{t}=\frac{1}{3}\overline{{\boldsymbol{v}}^2}\overline{t}$$

となり、\(D=\overline{v}\overline{l}/3\)としている他の文献と一致します。

 もう一つ、拡散係数\(D\)の違いの要因となっているのは、平均自由時間\(\overline{t}\)と平均自由行程\(\overline{l}\)の「平均」の取り方です。1/2倍の係数がかかったりかからなかったりするのは、この平均操作の仕方の違いに起因します(注:パウリ[3]とChapman[11]はまた別の理由で1/2の係数をつけています)。気体分子運動論では、気体分子同士の衝突イベントと次の衝突イベントの間の時間の平均が\(\overline{t}\)、衝突イベントから次の衝突イベントが起きるまでに進める距離の平均を\(\overline{l}\)、としています。これらの統計平均を計算する際、どのような確率分布を仮定するかによって、平均値(期待値)が変わってしまうのです。このシリーズ記事では、この確率分布の取り扱い方に焦点を当てて、拡散係数の式の違いを議論していきます。

D2マフズさんとM2保科さんINTAKEセミナーでダブル受賞!

2022年11月18日~22日、東北大学・青葉山キャンパスにおいて開催された国際セミナー “Integrated Nanocomposites for Thermal and Kinetic Energy Harvesting (INTAKE) Seminar 2022″で、博士課程2年生のマフス ハサンさんと修士課程2年生の保科拓海さんが、Best Presentation Awardを受賞しました。マフスさんは、Best Presentation Awardの中で最高位のFirst Prizeに選ばれました。

INTAKEセミナーは、「IoT社会を実現するマルチ環境発電材料・デバイス国際研究拠点形成事業」の一環で開催された国際セミナーです。東北大学、早稲田大学、九州工業大学、東海大学、大阪工業大学、東洋大学、英・マンチェスター大学、英・チェスター大学、英・アストン大学、中国・清華大学、中国・北京理工大学の若手研究者が参加し、活発な意見交換を行いました。

Best Presentation Award First Prizeを受賞したマフズさん
Best Presentation Awardを受賞した保科さん

 

D3シルビアさん電子デバイス界面テクノロジー研究会で服部賞(若手奨励賞評価・解析部門)受賞

2022年1月29日~30日に開催された「電子デバイス界面テクノロジー研究会」(第27回)で、博士後期課程3年のSylvia Y. Y. Chungさんが「Identifying an Anomalous Phonon Mode in SiGe Alloy using Molecular Dynamics Simulation」と題して口頭発表行い、この発表で服部賞(若手講演奨励賞 評価・解析部門)を受賞しました。

完全拡散律速モデル(1)

Deal-Groveモデルでは、SiO2膜厚が薄い初期の段階は界面における酸化反応が律速となり、そのためSiO2膜厚は時間に対して線形に増加すると説明されてきました。しかし2004~2005年にかけて発表された第一原理量子化学計算[1,2]により、

界面におけるO2分子とSi基板の化学反応にはエネルギー障壁がほぼ存在しない

という驚くべき事実が明らかにされました。

 では初期の線形領域はなぜ存在するのでしょうか? 線形領域の酸化速度の活性化エネルギー2.0eVは、いったい何のエネルギー障壁を示しているのでしょうか?

 上記の界面反応の量子化学計算を発表したBongiornoとPasquarello[1]は、界面近傍のSiO2層は圧縮歪みを帯びており、O2分子の拡散障壁が1.24eVから2.0eVに上がっているのだ、と主張しました。界面から約1nmの範囲のSiO2層は構造遷移領域と呼ばれ、この領域で密度が増加していることが以前より実験でも指摘されていました。

 だとすると、Deal-Grove方程式の界面反応速度係数\(k\)も、SiO2膜厚が薄い初期段階のO2分子の拡散速度に関係していることになります。\(k\)が拡散係数\(D_0\)に関係しているとしたら、初期の異常な酸化速度の解釈も変わる可能性があります。

 そこで筆者(渡邉)[3]は、界面近傍の構造遷移領域で局所的に拡散障壁が増加するというモデルを前提にして、Deal-Grove方程式に代わる新しい線形‐放物型方程式を導き、線形速度定数\(B/A\)を新たに定式化しました。新しい方程式を使って、線形速度定数\(B/A\)の実験値に合うような構造遷移領域の厚さを求めたところ、その厚さはおおむね1nm程度と算出されました。これは実験で指摘されていた構造遷移領域の厚さと一致します。そして予想通り、初期の異常な酸化速度も拡散速度の上昇で説明すべきであることが判明し、Fargeixらの解析[4]以来お蔵入りにされてきた「初期増速拡散説」が復活することがわかりました。

[1] A. Bongiorno, A. Pasquarello, Phys. Rev. Lett., 93, 086102 (2004).
[2] T. Akiyama and H. Kageshima, Surf. Sci., 576, L65 (2005).
[3] T. Watanabe, K. Tatsumura, I. Ohdomari, Phys. Rev. Lett., 96, 196102 (2006).
[4] A. Fargeix, G. Ghibaudo, G. Kamarinos, J. Appl. Phys. 54, 2878 (1983).


完全拡散律速モデルにおける酸化種濃度の深さプロファイルと拡散障壁プロファイル

 

上図が、完全拡散律速熱モデルで想定するO2濃度プロファイルです。右側のグラフは、構造遷移領域におけるO2分子の拡散係数の活性化エネルギーの分布を示しています。Deal-Groveのような界面反応の障壁の代わりに、界面近傍の厚さLの構造遷移領域内で拡散障壁が上昇し、濃度が急低下していると考えるのです。

次回から、上図のモデルに基づく新しい酸化速度方程式の導出を示していきます。

Fargeixの解析

ドライ酸化のごく初期で見られる酸化速度の異常な増加は、当初、酸化種が速く拡散するために起こる現象と考えられていました。前回紹介したように、DealとGroveは、Mott-Cabreraのモデルを引き合いに出してイオン化した酸化種の増速拡散で説明しています。

しかし、1983年に発表されたFargeixらの解析1)で、この増速拡散モデルは否定されることになります。今回はFargeixらがどんな解析を行ったのか紹介いたします。


Fargeixらは、酸化速度の逆数\(dt/dx_0\)の振る舞いを調べました。Deal-Groveの微分方程式によると、\(dt/dx_0\)は

$$ \frac{dt}{dX_0}=\frac{A}{B}+\frac{2}{B}x_0 $$

と与えられ、傾きが\(2/B\)、切片が\(A/B\)の直線を描きます。しかしドライ酸化では、下図に示すように酸化膜厚\(x_0\)が薄い初期の領域で直線ではなくカーブを描きます。このカーブを描いている部分が初期の異常領域です。注目すべきは、酸化条件によらずこのカーブが常に下に曲がっていること、すなわち、\(x_0\)が小さくなるほどグラフの傾きが大きくなるという共通点があることです。

酸化膜の成長速度の逆数と酸化膜厚の関係。初期領域でグラフが下に曲がっている。(Fargeixらの論文1)を元に作成)

この実験結果から以下のことが言えます。\(x_0\)が小さくなるにつれてグラフが下に曲がっているということは、Deal-Grove方程式によると

  1. \(x_0\rightarrow 0\)で傾き\(2/B\)が増加している
  2. \(x_0\rightarrow 0\)で切片\(A/B\)が低下している

のいずれか、ということになります。

もし酸化種の増速拡散が原因でグラフが曲がったとするなら、拡散係数\(D_0\)に比例して\(B\)も大きくなるはずです。よって、下図に示すように傾き\(2/B\)は減少し、グラフは上向きに曲がることになります。これはFargeixらの実験結果と逆の傾向です。

Deal-Groveモデルに基づくグラフの曲がりの解釈。初期領域で拡散係数D0が増加しているとするとグラフが上に曲がらなければならない。

Fargeixらの実験結果を説明するには。界面反応速度定数\(k\)が\(x_0\rightarrow 0\)で増加し、線形速度定数\(B/A\)の逆数である切片\(A/B\)が低下していると考えなければなりません。

こうして、ドライ酸化の初期にみられる線形特性からのズレは、界面における酸化反応速度が速くなっているからだとされ、DealとGroveが言うような酸化種の増速拡散によるものではない、という結論に至ったのです。

ただしFargeixが導いた結論は、あくまでDeal-Grove方程式に基づく解釈です。2006年に筆者(渡邉)が発表した新しい線形-放物型方程式2)ではFargeixらの実験の解釈が180度変わり、「初期増速拡散」説が復活することがわかりました。次回からこの新しいモデルを解説していきます。

  1. A. Fargeix, G. Ghibaudo, G. Kamarinos, J. Appl. Phys. 54, 2878 (1983)
  2. T. Watanabe, K. Tatsumura, I. Ohdomari, Phys. Rev. Lett., 96, 196102 (2006).

複式簿記による研究費管理のススメ(6)

帳簿の運用方法

前回まで、仕訳の仕方試算表および財務諸表の簡易版であるサマリー表の作り方を一通り見てきました。次に、これら帳簿の運用方法を説明します。

1) 年度始めの支出計画立案

4月に交付額が決まったら、まずは空の帳簿を作成し、最初の取引として仕訳帳に交付金の入金を記録します。実際の入金は数か月先になる場合が多いですが、所属機関で研究費の執行が可能になっていれば、研究者から見れば入金されたも同然です。入金扱いで問題ありません。

次に、年間の支出計画を引当金に計上します。できるだけ確実性が高い支出計画を記載し、本当に支出するかどうか読めない支出計画は、優先度が高くなければ記載しないことを勧めます。後々の計画変更をできるかぎり抑制し、純資産の見積もりの精度を高めるためです。

2) 月毎のチェックと計画見直し

年度の初頭に予算計画を立てたら、あとは経理担当者に仕訳帳への記入を任せます。月に一度くらいのペースでミーティングを行い、引当金の中身を精査していけば十分でしょう。

ただし、サマリー表は、仕訳帳、試算表と連動させてプロジェクトリーダーが常時見られるようにしておきます。帳簿ファイルをクラウド・サーバーに保存して共有しておくと良いでしょう。プロジェクトのメンバーから日々寄せられる買い物要求に対して可否を判断するには、純資産の正確な金額を常に把握しておく必要があるからです。

引当金は月毎に分けていますので、過去の月の引当金はゼロ円になるのが理想的です。もし、4月に利用した実験施設の使用料の請求書が5月に発行されると判明した場合、「引当金(4月)」に計上していた金額をいったん取り下げ、改めて「引当金(5月)」に計上しなおす習慣にしておけば、過去の月の引当金はゼロ円になるはずです。ゼロ円にならなければどこかに問題があるはずなので、この作業を通じて様々なミス、トラブルを発見することができます。

既に述べたように、ここでは総勘定元帳への転記を省略していますが、引当金のチェック用に、引当金の勘定元帳くらいは月に一度作成しても良いかもしれません。ただし、EXCELのフィルタ機能を使えば仕訳帳の中で引当金の項目を抽出できますので、わざわざ勘定元帳を作成しなくても問題なく作業はできるでしょう。


この記事では、複式簿記の仕組みをつかって、年度予算の適切な執行を補助する方法を解説してきました。作業のゴールは表3のサマリー表の作成ですが、これを作成するだけなら、なにも複式簿記にする必要はありません。従来の支出管理表に加えて、執行予定の金額と執行予定時期を記録した帳簿を作っておけば、全く同じ表が作成できるからです。

それでも複式簿記を勧める理由は、簿記の基本的な知識がある人になら誰にでも日々の帳簿への記入作業を任せられるというメリットがあるからです。簿記の勉強を兼ねて学生に協力してもらうのも有意義でしょう。仕訳のルールさえ理解してもらえていれば、経理担当者の引継ぎがスムーズに行えますし、複数人で共同管理することも可能です。ローカル・ルールではなく、標準化された枠組みの中で所望の機能を実現しているところに、ここで紹介した方法の良さがあると思います。

(渡邉 孝信)

複式簿記による研究費管理のススメ(5)

サマリー表の作成

「サマリー表」とは、研究費の経理処理に必要な情報をまとめた、財務諸表の簡易版です。バランスシートの「資産」「負債」「純資産」の金額、損益計算書の中の「費用」の内訳、そして各月の「引当金」の残高を一覧表示させます。

表2に示した試算表から作成したサマリー表を表3に示します。これを「科研費・基盤研究(〇)」、「○○財団研究助成金」など研究費ごとに用意します。いちいち新たに作成するのではなく、試算表と連動して自動的に更新されるように、同じEXCELファイル内に作り込んでおきます。

表3 サマリー表

1行目の右の方に、「資産」および「負債」の合計金額が記載されています。これは「試算表」の「資産」および「負債」の勘定科目の、「当期増分」の合計金額です。2行目の右端にある「純資産」は、「資産」から「負債」を引いた差分です。この「資産」、「負債」、「純資産」の3つの金額からなる極めて単純な表が「バランスシート」になっています。「純資産」は、現在の研究費の残金のうち、支出予定が決まっていない金額、すなわち、これから自由に使途を決められる研究費の余裕を表しています。この例では、この時点で73万円ほど余裕があることになります。年度初めに純資産が沢山あると安心ですが、年度末に向けてゼロになるように執行のペースを調節していく必要があります。

3行目以降は、「試算表」のうち、「費用」と「負債」の内訳を見やすく並べ替えたものです。公的研究費の場合、「設備備品費」、「消耗品費」、・・・といった費目の額が交付時に決まっています。ある程度の費目間流用は認められているものの、基本的には計画通り執行することが求められますので、各費目の合計金額が許容範囲に収まっているどうかもチェックする必要があります。そこで、「予算額」という列に、交付時に設定した各費目の金額を参考データとして記載しています。

なお、表3の例では国内旅費が予算オーバーになっていますが、科研費の場合、直接経費総額の50%までは費目間流用が認められているので問題ありません(科研費ハンドブック2018年度版参照)。 さらに付け加えると、直接経費総額の50% が300万円以下の場合は、300万円まで費目間流用が認められています。ですので、年度予算が数百万円規模の科研費の場合、費目間流用制限で困ることはほとんどありません。科研費は柔軟でとても良い制度です。

3行目以降の右の方に、各月の「引当金」に計上した金額が記載されています。これが現時点で予定されている未執行の金額を表しています。過去の月の引当金がゼロになっていない場合は要注意です。なぜなら、その月に予定していた支出が完了していないことを意味しているからです。単に請求書が手元に届いていないだけかもしれないし、業者に発注するように指示していたのに当の担当者が忘れていた、といったミスが潜んでいるかもしれません。あるいは、支出計画から外したつもりでいたのに、経理担当者に正しく伝達されておらず、帳簿に反映されていなかっただけかもしれません。

このように、「引当金」の数字は、研究費執行上の様々なトラブルを発見するトリガーとして大変役立ちます。

これまでの記事で、仕訳の仕方、試算表およびサマリー表の作り方まで一通り見てきました。次回は、これら帳簿の日々の運用方法を説明します。

(渡邉 孝信)