拡散係数もいろいろ(5)

渡邉孝信(早稲田大学・電子物理システム学科)

ドルーデも1/2倍していた!

係数に1/2倍の違いが生じる問題は、第2回で少し触れたように、ドリフト移動度\(\mu\)でも起こっていました。ドルーデが1900年に発表した電気伝導理論の論文

$$\mu=\frac{q\overline{t}}{2m}  (←間違い!)\label{drude}\tag{5.1}$$

と定式化されていたのです。この問題を掘り下げていくと、拡散係数の1/2倍の違いの原因も見えてきます。まず、ドリフト移動度についておさらいをしたのち、どうして移動度を式\(\eqref{drude}\)で表したのか、式\(\eqref{drude}\)がどうして誤りだという結論に至ったのか、見ていくことにしましょう。

図5.1 導体中の電子の運動の軌跡。(a)電界が印加されていないとき。(b)電界が印加されているとき。

 

図5.1は、導体中の電子の運動の軌跡を模式的に示した図です。図5.1(a)は外から電界が印加されていない状態です。電子は熱エネルギーをもって絶えずブラウン運動していますが、不純物イオンやフォノンなどと衝突を起こす度に頻繁に移動方向を変え、移動方向は完全にランダムになります。時間平均を取ると特定の方向への移動はなくなり、正味の電流はゼロとなります。

図5.1(b)は、外部から電界を印加したときの様子です。この場合も電子はランダムな運動をしますが、衝突イベントと衝突イベントの間に電界によって加速されます。長時間平均を取ると、電子は定常的な速度\(\boldsymbol{v}_d\)で電界ベクトルの方向(と逆向き)に移動する傾向を示します。 \(\boldsymbol{v}_d\)がドリフト速度です。

電子のドリフト移動\(\mu\) (cm\({}^2\)・V\({}^{-1}\)s\({}^{-1}\))は、次式で定義されます。

$$\mu\equiv -\frac{\boldsymbol{v}_d}{\boldsymbol{E}}\tag{5.2}$$

\(\boldsymbol{E}\)(V/cm)は外部から印加する電界です。この式、つまりドリフト速度を、平均自由時間\(\overline{t}\)を使った微視的な描像で定式化してみましょう。

今、外部電界\(E\)が\(x\)軸方向に一様に印加されているとし、個々の電子がニュートン方程式に従って運動するとみなすと、運動方程式の\(x\)成分は

$$m\frac{d v_x}{dt}=-qE\tag{5.3}$$

となります。直近の衝突が時刻0で起こったとし、次の衝突が起こる前の時刻を\(t\)とすると、運動方程式の解は

$$m v_x(t)-mv_x(0)=-qEt\tag{5.4}$$

となります。これを多数の電子についてアンサンブル平均をとると、

$$m\left <v_x(t)-v_x(0)\right >=-qE\left<t\right>\tag{5.4}$$

となります。左辺の\(\left <v_x(t)-v_x(0)\right >\)は、衝突と衝突の間に獲得する速度の平均なので、これがドリフト速度 \(v_d\)とみなせます。右辺の\(\left < t\right >\)は、電界によって加速される時間のアンサンブル平均です。これを平均自由時間、すなわち\(\left<t\right>=\overline{t}\)とみなせば、

$$\mu=\frac{q\overline{t}}{m}  (←正しい!)\tag{5.5}$$

となり、期待どおりのドリフト移動度の式が導かれます。

一方、ドルーデが最初に示した式\(\eqref{drude}\)では、 \(\left < t \right > =\overline{t}/2\)としていることになります。

どうして1/2倍したくなるのか?

ドルーデが\(\mu=q\overline{t}/(2m)\)を採用する決め手となった理由はおそらく、金属の電気伝導度と熱伝導度の比が温度に比例するというヴィーデマン・フランツ則が、 \(\mu=q\overline{t}/(2m)\)とおくことで、当時の古典論の枠組みで定量的に説明できた(できてしまった)からだと想像できます。しかし、ドルーデほどの人がつじつま合わせをしたわけではないでしょうから、1/2倍した明確な根拠もあったはずです。

ドルーデがどうして\(\mu=q\overline{t}/(2m)\)としたのか、真意はわかりませんが、次のように考えれば、1/2をつけたくなる気持ちが想像できます。

図5.2 時間と獲得速度の関係

 

図5.2は、時間間隔\(\overline{t}\)で衝突する典型的な電子が、電界から獲得する速度と時間の関係を示したグラフです。前の衝突から次の衝突までの間、速度は時間に比例して増加します。衝突の度に速度はリセットされ、熱運動以外の速度成分はゼロとなります。すると、平均自由時間\(\overline{t}\)内に電界によって増える速度成分の時間平均は、最終的に獲得する速度\(qE\overline{t}/m\)の1/2となります。

一見まっとうな考え方に思えますが、一体、この考え方のどこが良くないのでしょう? この疑問は、「平均値」を計算する際に暗に想定している「確率分布」の違いに気づくことで解消できます。